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Perceptual studies of timbre semantics have revealed certain consistencies in the linguistic concep-
tualization of acoustic attributes. In the standard experimental paradigm, participants hear timbral
stimuli and provide behavioral responses. However, it remains unclear the extent to which descrip-
tive consistency would be observed if this paradigm were reversed, that is, if participants were
instructed to create novel timbres in response to target adjectives. Given an unfamiliar synthesis
interface, would musically trained participants craft similar timbral profiles for the same familiar
adjectives? In this study, we explore timbre semantics using a novel frequency modulation (FM)
synthesis production task. Participants (N = 64) created unique timbral outputs in response to 20
common timbre descriptors drawn from orchestration treatises (e.g., brilliant, dull, harsh). Acoustic
analyses of the resultant 1,280 signals, in conjunction with linear mixed-effects modeling and
clustering analysis, indicate that participants were moderately consistent in their timbral creations.
Word valence and arousal interacted to influence average spectral centroid and noisiness. Specifi-
cally, clearly positive and negative words produced significantly different acoustical profiles than
more affectively neutral words. This result confirms a number of findings from the perceptual
literature while offering preliminary evidence that affective dimensions of timbre semantics sys-
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tematically influence sound production in an unfamiliar context.
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Lacking its own domain-specific terminology, timbre is often
described using affectively congruent adjectives borrowed from
other domains. A sound might be considered “penetrating” or
“dark,” “harsh” or “melancholy.” Although the semantic norms of
timbre description are more subjective than those governing other
musical parameters, certain broad commonalities in descriptive
practices have been noted (Kendall & Carterette, 1993a, 1993b;
Lichte, 1941; Pratt & Doak, 1976; von Bismarck, 1974). For
example, von Bismarck (1974) identified four common semantic
structures for timbre, full-empty, dull-sharp, colorful-colorless,
and compact—diffused. More recently, Alluri and Toiviainen
(2010) reported that terms related to brightness, activity, and
fullness are common to the discourse of timbre. Relatedly, Zacha-
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rakis, Pastiadis, and Reiss (2014, 2015) compared English and
Greek speakers to demonstrate that timbre semantics is largely
undergirded by luminance, texture, and mass terms. In short,
timbre description appears to rely on fairly systematic and con-
ventionalized semantic associations.

In most timbre semantics studies, researchers play participants
sound signals that are manipulated along one or more categorical
or continuous dimension, then record behavioral responses in the
form of semantic differential scale ratings, free verbal response,
adjective checklists, or other procedures (see Susini, Lemaitre, &
McAdams, 2012). In addition to investigating the effect of the
experimental manipulation, it is also common for researchers to
examine the acoustic correlates of perceptual response, often by
building predictive models explaining behavioral data by way
of computationally extracted acoustic descriptors (Eerola, Fer-
rer, & Alluri, 2012; McAdams, Douglas, & Vempala, 2017;
Wallmark, 2019a). In this way, researchers can evaluate which
specific psychoacoustic variables modulate semantic response. Infer-
ences drawn from this paradigm are unidirectional; that is, they aim
to explain the perceptual effect of timbre on semantic classifica-
tion. However, this method does not address the relationship
between timbre acoustics and semantics from the opposite direc-
tion: How do the affective dimensions of words modulate acous-
tical response? To be sure, it remains relatively unknown whether
the inverse applies to the timbre—language relationship in the act of
musical creation. Given an unfamiliar sound generation interface,
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would a sample of musicians—people accustomed to shaping
timbre in musical performance—create fairly consistent timbral
profiles to match familiar descriptive words?

To explore this question, it is first crucial to operationalize the
affective mechanisms linking auditory perception to lexical access.
Timbre is often considered a “sign-post for the emotions” (Boulez,
1987). Indeed, psychobiological studies indicate that the affective
component of timbre perception is incorporated very early (Peretz,
Gagnon, & Bouchard, 1998; Tervaniemi, Winkler, & Néitidnen,
1997), and is fundamental to how we describe sound in later
processing stages. Affective language is ubiquitous to the dis-
course of timbre: In an analysis of timbre description in orches-
tration texts, Wallmark (2019b) found that over one third of the
corpus was purely affective (e.g., fine, expressive, melancholic),
representing the most widespread conceptual framework for de-
scription. To investigate the acoustic correlates of timbre affect
dimensions, Eerola et al. (2012) extracted acoustic data from a set
of signals rated on valence and arousal scales. They found that just
a couple acoustic descriptors could reliably predict affective re-
sponse, especially the ratio of high-frequency/low-frequency en-
ergy in the signal, which was strongly associated with negative
valence and high arousal (but see McAdams et al. [2017] for
conflicting evidence). Given these consistencies, it is reasonable to
hypothesize that the affective connotations of target adjectives
would have an impact on the creation of novel synthetic sounds,
with high-arousal adjectives (e.g., brilliant, harsh) tending to elicit
timbral outputs with a higher spectral center of gravity relative to
low-arousal words (melancholic, tender).

Affective Meaning

The affective meaning of words has often been studied using a
dimensional model of the emotions (Mehrabian & Russell, 1974;
Russell & Mehrabian, 1977). This approach is often thought to
have originated in the influential work of Osgood, Suci, and
Tannenbaum (1957), who reported that three orthogonal dimen-
sions—evaluation, activity, and potency—explained about half of
the total variance in semantic differential ratings, with the first
factor accounting for almost 70% of common variance. Subse-
quent models replicated this basic tripartite dimensional structure
(though with slightly different nomenclature and operationaliza-
tions; see Bakker, Van der Voordt, Vink, & De Boon, 2014).
Mapping roughly onto the three factors of Osgood et al., valence
refers to the pleasantness of the emotion evoked by a word;
arousal is the implied activation or intensity; and potency (or
dominance) is the perceived strength or degree of control implied
by a word. These dimensions have been used in a number of
semantic norms databases used in affective analysis of texts and
discourse (Bradley & Lang, 1999; Warriner, Kuperman, & Brys-
baert, 2013), as well as studies of music emotion recognition and
induction (Aljanaki, Yang, & Soleymani, 2017; Eerola & Vuos-
koski, 2011; Schubert, 2007).

Descriptive Adjectives in Sound Synthesis

The development of intuitive sound synthesis technologies us-
ing adjectives to control timbral parameters has long been consid-
ered something of a “holy grail” for researchers in sound design
and synthesis (Carron, Rotureau, Dubois, Misdariis, & Susini,

2017). Musicians and listeners commonly conceptualize timbre
according to semantic qualities, but interfaces traditionally rely on
the manipulation of numerical parameters. This deficit of “seman-
tic directness” (Seago, Holland, & Mulholland, 2004) can limit
broad engagement with sound synthesis and negatively impact the
creative process (Miranda, 2002). In an early attempt to remedy
this gap, Ashley (1986) employed frequency modulation (FM)
synthesis in a trial-and-error paradigm in which users responded
with verbal descriptions to arbitrary changes in timbre to “teach”
the system to associate certain settings with adjectival qualities.
The SeaWave system of Ethington and Punch (1994) allowed
users to shape a given “parent timbre” additively by manipulating
attack, presence, and cutoff dimensions through the selection of
varying degrees of adjectival properties (e.g., plucked attack, res-
onant presence, damped cutoff). The authors found, for instance,
that “brightness” corresponded with increasing harmonic density.

Incorporating recent machine learning techniques with the aim
of developing a system for automated synthesis, Gounaropoulos
and Johnson (2006) used a neural net to train a timbre classifica-
tion algorithm on a number of synthesized sounds and adjectives
then set the algorithm loose classifying a hold-out sample of
signals. In a related study, Krekovic, Pos¢ic, and Petrinovic¢ (2016)
used fuzzy logic algorithms to transform adjectival inputs into
timbral outputs, which were then validated by musically trained
raters. However, the acoustical correlates of adjectives or affective
dimensions were not explored in these articles. Eschewing seman-
tic classification, other researchers have developed graphical sound
synthesis and visualization interfaces based on cross-modal corre-
spondences between timbral parameters and dimensions of visual and
tactile sensation (Giannakis & Smith, 2000; Soraghan, Faire, Renaud,
& Supper, 2018). Though not explicitly linguistic, such synesthetic
mappings between timbre and vision and touch are common in the
everyday discourse of sound (for review, see Wallmark & Kendall, in
press).

Study Aim

The present study investigates the affective mechanisms under-
lying the semantics of timbre in the context of synthetic sound
generation. Our main goal is not to develop a fully operational
semantic-based timbre control interface, but rather to use a simple
synthesis patch to explore acoustic regularities in timbre creation
when participants are prompted with adjectives of varying affec-
tive connotations.

This study explores the timbre—language connection by re-
verse engineering the standard paradigm. We ask the following
question: Can musicians reliably and consistently create novel
tones in an unfamiliar sonic context based on familiar verbal de-
scriptors alone? To explore this question, we constructed an FM
synthesis interface designed to allow participants to actively sculpt
novel timbres in response to target adjectives. This study focuses
on the synthetic sounds generated by musicians because musical
training has been shown to increase perceptual acuity toward
timbre (Chartrand & Belin, 2006; Siedenburg & McAdams, 2018).
Twenty descriptive adjectives common to the discourse of instru-
ment timbre were provided to 64 musically trained participants,
who created “best fit” timbres for each word. Audio signals for the
resulting 1,280 individual timbral creations were then analyzed
using mixed-effects models and hierarchical clustering procedures
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to examine acoustic uniformities as a function of the affective
meanings of the adjectives along valence and arousal dimensions.

Method

Participants

Sixty-four musically trained participants completed the experi-
mental task (30 females), M,,. = 20.7, SD = 3.2. The majority
(57) were undergraduate and graduate music majors at Southern
Methodist University Meadows School of the Arts, a conservatory-
style music department, and the remainder (seven) were student
musicians (non—-music-majors) enrolled in a music appreciation
course; the mean number of years musical training was 11.8 years
(SD = 3.9). Participants received extra course credit for partici-
pation. The study was approved by the Southern Methodist Uni-
versity Institutional Review Board.

Stimuli

Our aim in word stimuli selection was to determine some of the
most commonly used and intuitive instrumental timbre adjectives
in the symphonic tradition. To do so, we analyzed two canonical
orchestration treatises (Berlioz, 1882; Rimsky-Korsakov, 1933)
for their use of timbre descriptions. Word stimuli consisted of the
20 most frequent descriptive terms for musical timbre in these
texts: All terms pertaining to instrumental timbre were extracted
manually from these sources following the procedure outlined
by Wallmark (2019b). Together the books included a total
frequency of 940 timbre descriptors, of which 357 represented
unique tokens. This list of descriptors was then ranked accord-
ing to frequency.

To determine the affective connotations of the word stimuli, we
classified the most frequent adjectives according to their implied
valence, arousal, and dominance using a well-established database
of ~14,000 scored and validated English word stems (Warriner et
al., 2013). This tripartite affective structure is based on the model
of Osgood et al. (1957), and has been used in many similar
semantic norms databases used in sentiment analysis, natural lan-
guage processing, and corpus linguistics (Bradley & Lang, 1999).
However, methodological issues in the Warriner et al. (2013) data
set made dominance ratings hard to interpret (participants in that
study were asked to respond to how “dominant” and “in control”
they felt when reading each word, rather than rating the implied
dominance of the words themselves). Due to this uncertainty in the
operational definition, which is consistent with previous work
demonstrating similar ambiguities with the dominance or potency
dimension (Osgood et al., 1957), we opted to focus our analysis on
word valence and arousal. This is consistent with many music
psychology studies that use the circumplex model of affect (Rus-
sell, 1980; see Zentner & Eerola, 2010). Ratings for these two
dimensions in Warriner et al. (2013) were originally recorded
using a 1-9 Likert-type scale (negative—positive valence, low—
high arousal); means and standard deviations for each of the 20
common timbre adjectives included in the Warriner et al. (2013)
data set are shown in Table 1.

Additionally, adjectives were sorted by mean valence and arousal
ratings into three roughly balanced ordinal categories: low, medi-
um/neutral, and high valence/arousal. Thus, for instance, “tender”

Table 1
Adjective Stimuli and Affective Ratings
Valence Arousal

Adjective (M = 5.06, SD = 1.68) (M = 421, SD = 2.30)
Bright Positive (6.84, 1.86) Medium (5, 2.45)
Brilliant Positive (7.5, 2.28) High (5.95, 2.8)
Charming Positive (7.05, 2.15) Medium (5, 2.79)
Dark Neutral (5.08, 1.8) Medium (4.09, 2.43)
Dull Negative (3.4, .94) Low (1.67, 1.03)
Full Neutral (6, 2.02) Low (3.48,2.04)
Gloomy Negative (3.15, 1.63) Low (3.32,2.12)
Hard Neutral (4.35, 1.97 Medium (4.5, 2.75)
Harsh Negative (3.44, 1.42) High (5.63, 2.29)
Melancholic Negative (3.74, 1.69) Medium (4.13, 2.56)
Mysterious Neutral (6.05, 1.32) High (5.45, 2.04)
Nasal Neutral (4.26, 1.45) Low (3.38, 1.6)
Noble Positive (7.16, 1.95) Medium (4.14, 2.31)
Penetrating Neutral (5.71, 1.76) High (6.08, 2.48)
Piercing Negative (NA) High (NA)
Rich Positive (6.83,2.31) High (6.81, 2.04)
Rough Negative (3.68, 1.69) High (5.43, 1.97)
Sweet Positive (7.77, 1.38) Medium (4.14, 2.92)
Tender Positive (6.47, 1.75) Low (3.22,2.21)
Veiled Negative (4.14, 1.25) Low (3.32, 1.97)

Note. NA = not available. Table displays the 20 most frequent adjectives
used by Berlioz (1882) and Rimsky-Korsakov (1933) to describe instru-
mental timbre. Mean ratings and corresponding standard deviations for
valence and arousal are shown in parenthesis (from Warriner, Kuperman,
& Brysbaert, 2013).

was classified as positive valence (i.e., high) and low arousal,
whereas “dark” was neutral valence (i.e., medium) and medium
arousal. Each category consisted of six to seven individual adjec-
tives. An ordinal organization was selected to account for affec-
tively borderline or ambiguous words, which we felt might be
relevant in the context of timbre description. (The adjective “pierc-
ing” does not appear in the norms database; classifications for this
word were determined by the authors.)

Experimental Interface

The testing instrument used a simple FM generator programmed
in the Max/MSP environment. FM, developed and outlined by
Chowning (1977), alters the frequency of one oscillator (carrier)
via the output of a second oscillator (modulator). The ratios be-
tween the frequencies of these two oscillators, or the harmonicity
ratio, causes distortion of the waveform and extreme variance in
timbre via resultant harmonic frequencies symmetrically both
above and below the carrier frequency (i.e., sidebands). In this
study, lower harmonicity ratios (0—1) were chosen to limit the
range, as wider variance was determined in pilot testing to be too
overwhelming for participants.

One strength of the FM method using the present “sweet spot”
ratios is that it is perceptually nonlinear but also relatively intuitive
to navigate; that is, the interaction of carrier and modulator results
in a wide range of sometimes unpredictable sonic qualities that do
not map onto any monotonic perceptual scales within the 2D
space, while also constraining the more wildly variant options
characteristic of FM synthesis (Ashley, 1986). This nonlinearity
was preferable here to mitigate demand effects and encourage
more exploration of the available space by musician participants
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(e.g., if corners represented the perceptual extremes of an affec-
tively relevant linear acoustic scale, such as spectral centroid, we
might expect participants to respond to “extreme” words, once
these associations are learned, simply by dragging the cursor to the
corners). The interface is shown in Figure 1.

The object generated a pure sine wave signal. Input variables
from the interface were chosen following aural experimentation to
provide as much variety of timbre while retaining continuity. The
final interface model used the following input specifications: car-
rier frequency fixed at 440 Hz; x-axis harmonicity ratio (scaled
from O to 1, linear, left to right); and modulation index fixed at 0.2.
(Additional details about the FM synthesis interface and an exam-
ple of the patch itself can be found in the online supplementary
materials; see Figure S1 in the online supplemental materials.) The
output of the FM generator was then fed directly into a resonant
bandpass filter with a center frequency controlled by the x-axis
(1002100 Hz, left to right) and a Q controlled by the y-axis
(0-28, bottom to top; Figure S2 in the online supplemental mate-
rials). The addition of this filter had the effect of sweeping the
center frequency from left to right, and narrowing and broadening
the filter width (Q) from bottom to top. Additionally, the slider to
the right of the x/y space controlled a distortion amplifier applied
to the normalized signal, amplifying it linearly from 100% (no
change) to 499% overdrive, resulting in heavy clipping distortion.
This signal was then normalized using the Max/MSP “clip~"
object to constrain the max/min output level to a consistent 100%
before sending the output to the participant.

Participants were able to toggle the audio on/off using the
click box in the upper right of the interface (see Figure 1). The
small circle in the main field was able to be moved via mouse
click-drag motions, with audio settings updated every 100 ms.
The slider on the right was also click-drag assignable with
continuous real-time updates of the data. Participants were
instructed not to adjust the volume slider during the experimen-
tal task. Adjectives were presented below the interface; after
participants created a timbre that best matched each word using
mouse click-drag motions, they selected “Next,” which reset to
an X value of 50%, Y value of 60%, and slider value of 100%
(null). “Next” also advanced participants to the proceeding
word until all 20 were completed. The data sent from the main
x/y space resulted in values from O to 1,000 on each axis, and
0 to 499 (%) for the slider. These coordinate values were then
saved to the data files.

The harmonicity ratio has inherent consonant nodes at x-axis
(prescaled) values of 0 (no modulation), 500 (1:2), and 1,000 (1:1),
and lesser audible nodes at 333 (1:3), 250 (1:4), and 200 (1:5), and
their symmetrical nodes at 660 (2:3), 750 (3:4), and 800 (4:5),
where sidebands and difference tones of those ratios are generated.
The additional resonant bandpass filter was used to reduce the
similarity of these basic ratio nodes. The y-axis filtering would
have slight reinforcement of the carrier at data values (prescaled)
of 170 (1:1), 390 (2:1), 610 (3:1), and 830 (4:1). Lesser perceptible
nodes that resonate at first-level sidebands occur at data values of
60, 280, 500, and 670.

Tone on/off

Double-click this for
Audio Setup

B 100%

Volume

Timbre Association Study

Enter your Subject# ID below then click "Next" to begin.
For each word below, move the dot around in the space and adjust the
slider on the right until the sound best fits word. When you are done
with each sound, click "Next"

Brilliant

subject#: [T

copyright © 2016 Robert Frank and Zachary Wallmark

Figure 1.

Study interface.
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Procedure

To counterbalance for potential order effects, three versions of
the Max/MSP protocol were created, each with a different ran-
domly ordered presentation of the adjectives. Participants were
randomly assigned in equal numbers to the different versions.

The study took place in a quiet room, and participants recorded
their responses on iMac computers listening through Bose SoundTrue
headphones. To familiarize them with the experimental interface,
prior to beginning they were given a brief training session (~2 m) in
which they were encouraged to explore the timbral space and adjust
the computer volume to a comfortable listening level. We then in-
structed them that they would be presented with different adjectives
on the screen; their task would be to manipulate the timbral environ-
ment to find a quality of sound that “best fits” the given word. They
could take as much time as they wanted for this task. None of the
participants reported any difficulty or confusion afterward with the
experimental task. The duration of the experiment was ~15 min.

Results

Exploratory Acoustic Descriptor Analysis

We created WAYV sound files (44.1 kHz sampling rate) from the
coordinate data for acoustic analysis. Twenty-two low-level acous-
tic descriptors were computationally extracted from the 1,280
audio files using MIRtoolbox 1.6.1 in the MATLAB environment
(Lartillot & Toiviainen, 2007). Because there were no temporal
features due to continuous audio playback, only spectral charac-
teristics of the signals were computed. These standard spectral
parameters are displayed in Table 2. In addition to timbre descrip-
tors available in the MIRtoolbox, we calculated “subband flux,” or
the average frequency fluctuation in 10 octave-scaled bands of the
signal (Alluri & Toiviainen, 2010): This frequency-segregated
index of spectrotemporal change was found to be perceptually
relevant in semantic judgments of timbre (Alluri & Toiviainen,
2012; Eerola et al., 2012; Wallmark, 2019a). Zero-cross was
trimmed due to insufficient variability across the signals, leaving
21 acoustic variables, including RMS power (root mean square) as
a measure of total signal energy and a rough proxy for perceived
loudness.

Table 2
Acoustic Descriptors

To reduce the number of acoustic variables to a more manage-
able number, a principal component analysis (PCA) with varimax
rotation was conducted on the whole set of standardized variables
for the 1,280 output signals. Sampling adequacy for the PCA was
confirmed (Kaiser-Meyer—Olkin index = .84). The procedure
generated three latent acoustical components with eigenvalues
greater than 1 that together explained 72% of variance. As shown
in Table 3, PC1 (30%) was characterized by strong loadings on
subbands 9 and 10, rolloff, brightness, centroid, flatness, entropy,
roughness, and inharmonicity, suggesting that the first PC relates
to strength in high-frequency components and a relatively noisy
spectrum. For convenience, we can label PC1 the “Intensity”
factor. PC2 (23%) was driven by loadings on spectral fluctuation
in the middle, musical frequency range of 100—6400 Hz (hereaf-
ter, the “Flux” factor). Finally, PC3 (19%) was characterized
primarily by RMS strength and brightness, with strong negative
loadings on skewness and kurtosis (“Loudness” factor). These
three uncorrelated PCs were used to derive optimally weighted
linear combinations of the acoustic descriptors for use as factor
scores (—1 to 1) in the subsequent analysis (see Table S1 in the
online supplemental materials for mean factor scores organized by
word).

Modeling the Association Between Affective Meaning
and Acoustic Factor Scores

To explore the relationship between semantic structure and
acoustics, we next used a linear mixed-model approach (West,
Welch, & Galecki, 2006) to determine whether affective meaning
had any systematic effect on the three acoustic factors described
above. Lexicon-based studies of semantic orientation typically
approach affective meaning in text as either gradations along a
scale of polarity (Taboada, Brooke, Tofiloski, Voll, & Stede,
2011)—for example, from very negative to very positive—or as a
classification problem, where affective words are placed into a
single nominal or ordinal category of best fit (e.g., see the popular
binary lexicon of Liu, 2015). Hence, two parallel versions of this
analysis were calculated using the nlme package in R (Pinheiro et
al., 2018): one corresponding to the interval version of the seman-
tic data (Warriner et al., 2013), the other to ordinal (three levels:
low, medium, high). For the ordinal analysis, F tests (Type III sum

Descriptor

Definition

Subband flux (10 regions)
2010)
Zero-cross rate

Spectrotemporal fluctuation within 10 frequency bands (Alluri & Toiviainen,
Number of signal changes per unit of time

Frequency threshold below which 95% of energy is contained
Proportion of total spectral energy above 1500 Hz

Degree of variation between successive spectral peaks over time

Rolloff

Brightness

Centroid Center of spectral energy distribution
Spread Standard deviation of spectral energy
Skewness Asymmetry of spectrum

Flatness Wiener entropy of signal

Kurtosis Flatness of spectrum around mean
Entropy Shannon entropy of signal

Irregularity

Roughness Sensory dissonance averaged through time

Inharmonicity

Frequency deviation of partials from ideal harmonic series
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Table 3
Principal Component Analysis (PCA) on Acoustic Descriptors
Acoustic descriptor PC1 (30%) PC2 (23%) PC3 (19%)

Subband 10 (12.8-22 kHz) .86 27 21
Flatness .81 — 31
Centroid .80 — 52
Rolloff 79 — 51
Roughness .78 — 37
Subband 9 (6.4-12.8 kHz) 74 47 .20
Entropy 72 23 .61
Brightness .67 — .66
Inharmonicity .65 — —
Subband 5 (400-800 Hz) — 96 —
Subband 4 (200400 Hz) — 94 —
Subband 6 (800-1.6 kHz) 20 .89 —
Subband 7 (1.6-3.2 kHz) 32 .80 —
Subband 8 (3.2-6.4 kHz) 52 .67 —
Subband 3 (100-200 Hz) 41 .66 —
RMS power 29 .20 81
Skewness —-.35 — —.88
Kurtosis — — —-.87
Subband 2 (50-100 Hz) 42 27 —
Trregularity — — 21

Note. PC1 = Intensity; PC2 = Flux; PC3 = Loudness; RMS = root
mean square. Loadings <.20 are omitted; loadings >.60 are displayed in
bold. Descriptors with no loadings greater than .20 have been omitted.

of squares) and significance levels were estimated using the car
package in R (Fox & Weisberg, 2010). The models treated valence
and arousal ratings (as well as two-way interactions) as fixed
effects, and participant variability as a random intercept (see
Equation S2 in the online supplemental materials for additional
details).

In the interval version of the PC1 analysis, we found a significant
main fixed effect of valence, b = 0.19, SE = 0.07, #(1149) = 2.68,
p = .008, but not of arousal, b = 0.16, SE = 0.08, #(1149) = 1.95,
p = .05. More importantly, the interaction between valence and
arousal was significant, b = —0.03, SE = 0.02, #1149) = —2.17,p =
.03. Moving to the PC2 and PC3 models, however, we found that
affective meaning did not appear to have any effects on acoustic factor
scores (all main fixed effects and interactions, p > .05). Thus,
although word semantics appear to have exerted a systematic
effect on relative strength of high-frequency components, inhar-
monicity, auditory roughness, and so on, it did not relate to spectral
fluctuation and signal strength. However, the adjusted R* was low
for all the models (PC1 R?> = .03, PC2 R? = .03, PC3 R? = .02),
indicating that, although statistically significant, the semantic vari-
ables failed to predict most of the variation in acoustic responses.

Alternatively, we investigated the effect of ordinally conceived
semantic attributes on the resultant three acoustic factors, again
using linear mixed-effects models, with the expectation that results
would by and large conform to the interval analysis. (Because we
compare mean differences in acoustic factor scores between se-
mantic categories in this analysis, we report here only analysis of
variance output and Tukey-corrected post hoc comparisons.) For
PC1, a significant main fixed effect of valence was found, F(2,
1208) = 8.8, p = .0002, but the main effect of arousal was
nonsignificant, F(2, 1208) = 2.7, p = .07. Moreover, valence and
arousal demonstrated a borderline significant interaction, F(4,
1208) = 2.4, p = .048, as plotted in Figure 2a. As is clear given

the main fixed effects, the interaction is driven primarily by
valence: Positive and negative (i.e., low and high valence) words
are associated with elevated PC1 scores, and do not differ much
from one another (positive M score = 0.19, 95% confidence
interval [CI; 0.08, 0.30] vs. negative M = 0.08, 95% CI [—0.03,
0.19]), mean Tukey-corrected difference = —0.11, 95% CI
[—0.25, 0.04], p = .3. However, the PC1 scores for positive and
negative words were significantly higher than the scores for neu-
tral words (medium-valence M score = —0.30; 95% CI
[—0.41, —0.20]). Post hoc Tukey comparison of the mean PCI
difference between positive vs. neutral valence gives M = 0.50,
95% CI [0.36, 0.64], p < .001; similarly, the comparison between
negative vs. neutral gives M = 0.39, 95% CI [0.25, 0.53], p <
.001.

However, especially among medium and high-arousal words,
the neutral valence, somewhat affectively ambiguous words (e.g.,
“dark,” “full,” and “mysterious”) suppressed PC1 scores relative to
the bipolar valence categories (neutral valence/medium arousal
M = —0.40, 95% CI [—0.57, —0.22], neutral valence/high arousal
M = —0.39, 95% CI [—0.56, —0.22]). Post hoc Tukey pairwise
comparisons indicated a significant difference in the PC1 scores of
neutral/medium and neutral/high words compared with all other
categories except neutral/low, p < .05. In other words, acoustical
features associated with the “Intensity” factor (PC1) were sculpted
by participants to be more prominent when adjectives were either
clearly positive or clearly negative, but were lower when adjec-
tives were somewhere in between these affective poles.

For the PC2 model, no significant main fixed effects or inter-
actions were found (at p < .05). Confirming the continuous model,
then, this indicates that spectral fluctuations were not affected by
the semantic implications of the target adjectives.

Finally, PC3 exhibited significant main fixed effects of both
valence, F(2, 1208) = 13.32, p < .0001, and arousal, F(2, 1208) =

(a) (b)
0.3
A\ 0.5
— 00 "
U U
o a 00
-0.3
-0.5
-0.6 . . . . . .
Neg Neu Pos Neg Neu Pos
Valence Valence
Arousal ¢ low 4 med % high

Figure 2. Interactions between valence and arousal in (a) PC1 and (b)
PC3. Error bars: 95% confidence interval. PC1 = Intensity; PC3 =
Loudness. See the online article for the color version of this figure.
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5.9, p = .003. The interaction between valence and arousal was
likewise significant, F(4, 1208) = 3.39, p = .009, and tells a story
similar to the PC1 model (Figure 2b). Positive and negative words
were not much different from one another, and together prompted
significantly higher PC3 “Loudness” scores relative to affectively
neutral words (respectively, positive M = 0.17, 95% CI [0.06,
0.27] and negative M = 0.16; 95% CI [0.06, 0.27] vs. neutral
M = —0.29, 95% CI [—0.38, —0.19]). Post hoc Tukey pairwise
comparison between positive vs. neutral valence showed an aver-
age difference of M = 0.46, 95% CI [0.32, 0.60], p < .001, and the
difference between negative vs. neutral valence was M = 0.45,
95% CI [0.31, 0.59], p < .001; by way of contrast, positive and
negative valence were basically the same, M = 0, 95% CI [—.0.13,
0.13], p = .99. Somewhat inexplicably, however, the medium
arousal words (M = 0.36, 95% CI [0.25, 0.47]) showed signifi-
cantly higher PC3 scores compared with high/low arousal words
(high M = —0.18, 95% CI [—0.27, —0.08], low M = —0.14, 95%
CI[—0.25, —0.03]). Post hoc tests of the difference between high
versus medium arousal gave M = —0.53, 95% CI [—0.67, —0.40],
p < .001, and low versus medium arousal showed M = —0.50,
95% CI [—0.65, —0.35], p < .001, but no difference between
positive and negative valence was found, M = 0.04, 95% CI
[—.0.10, 0.17], p = .86. Given the well-established link between
loudness and perceived arousal (Dean, Bailes, & Schubert, 2011;
Leman, Vermeulen, De Voogdt, Moelants, & Lesaffre, 2005), this
interaction is somewhat difficult to interpret. Nonetheless, like in
the PC1 model, the acoustic descriptors subsumed under PC3
appeared to be sensitive to the clearer poles of the valence dimen-
sion compared with words in the middle. In sum, semantic vari-
ables interacted to modulate the “Loudness” factor in addition to
the more straightforwardly spectral attributes indexed by PC1.

Exploratory Cluster Analysis

In the linear mixed-effects models (LMM) analysis, we were
interested in the association between affective features of the
words and acoustics. We also wanted to know how distant each
individual word is from one another given both the semantic and
acoustic features; in other words, we were interested in the rela-
tionship among these words themselves. We next applied statisti-
cal clustering methods to partition the words in such a way that
those in the same clusters are closer to each other than words in
different clusters, according to a predefined distance criterion (see
James, Witten, Hastie, & Tibshirani, 2013). We clustered the
words based on a combination of all five semantic (valence and
arousal) and acoustic variables (PC1, PC2, PC3). The LMM model
(interval version) in the previous section suggested that only a
small amount of variability in acoustic variables can be explained
by the semantic variables, so clustering based on all semantic and
acoustic variables is more informative than clustering based on
semantic or acoustic variables separately.

To define a distance between any pair of words, we used the
interval version of the semantic variables (the word “piercing” is
not included in the analysis due to missingness of interval data for
the semantic variables). The primary challenge in defining the
distance between any two words was that the acoustic variables
associated with each word were created by 64 participants; there-
fore, the variation within these participants also needed to be taken
into account. Hence, we followed the approach recommended by

Yeung, Medvedovic, and Bumgarner (2003), who developed and
tested clustering methods for data with repeated measurements.
More specifically, we used an average linkage hierarchical clus-
tering algorithm combined with standard-deviation weighted Eu-
clidean distance (see R code in online supplementary materials).
First, we denote PC;;, as the values of the jth factor scores on the
word i measured by the rth subject, i = 1...,19,j = 1,2,3 and
r =1, ... 64. Then we calculated the average factor score
(Equation 1) and variance (Equation 2) for each word, as given
below

64
_ 1

D;= 64;:,1PCU, (1)

%:ig L —D.)? 2

i) (PCyj — Dy) (@)
644

The SD-weighted Euclidean distance between word i and word
k is given in Equation 3:

(D; =Dy’ .

= Wi~ Pk
diy \/2/6{1.2,34,VA} »1

a 5 1, .. 19%k=1,...,195i#k
oj; oy
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Finally, in implementing the hierarchical clustering method, we
needed a metric to compute the distance between two clusters. The
distance between cluster C, and cluster C, is defined as the
average of all the distances between every pair of words (i,k) with
word i belonging to C, and word k belonging to C,. In this
approach, each word begins as its own cluster and then the algo-
rithm proceeds iteratively, at each stage joining the two most
similar clusters and continuing until there is just a single cluster.
Based on this clustering procedure, the optimal number of clusters in
the data set is five, which was chosen based on the elbow method (see
scree plot, Figure S4 in the online supplemental materials). The
corresponding dendrogram is presented in Figure 3.

The clustering analysis based on both semantic and acoustic
variables revealed a number of insights into the relationship be-
tween semantic and acoustic data. The highest level bifurcation of
branches is structured by valence, with more positive words on the
left and more negative words on the right. Positive words form
three clusters. At the farthest distance, full forms its own branch.
The next cluster to the right consists of noble, tender, sweet,
bright, and charming, positively valenced words of low or mid-
dling arousal. Finally, the third cluster consists of positive, high
arousal words (brilliant, rich, mysterious, and penetrating). Inter-
estingly, brilliant and rich, verbal attributes that Kendall and
Carterette (1991) reported to be perceptually dissimilar, form their
own subcluster here, indicating a close similarity between seman-
tic and acoustic structure of these two words.

Moving to the more negative branch on the right side of the
dendrogram, we see that the word dull forms its own cluster,
separating from the other negative words at a fairly high level. The
rest of the negative words form three subclusters. Somewhat
surprisingly, harsh and melancholic cluster together, despite dif-
fering in arousal. Gloomy, nasal, and veiled—low arousal negative
words—make up the next subcluster. Next, rough, dark, and hard
clustered together; as these are fairly semantically divergent, this
subcluster suggests commonalities in acoustic profiles for these
three words.
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Figure 3. Dendrogram from the average linkage hierarchical clustering algorithm for the clustering based on
two semantic variables (valence, arousal) and three acoustic variables (PC1, PC2, and PC3). See the online

article for the color version of this figure.

Taken together, this analysis tells us that semantic and acoustic
patterns largely converge in this data set: the three acoustic PCs are
associated primarily with the valence dimension, with arousal
playing a differentiating role at lower levels. This result resonates
with the LMM analysis in affirming the centrality of word valence
and arousal in affecting timbral features.

Discussion

The present study explored the influence of affective semantic
dimensions on the creation of synthetic timbres. One novel com-
ponent of this study was conceptual: We inverted the structure of
most timbre semantic studies to investigate the effect of verbal
dimensions on sounds, as opposed to vice versa. Another novel
aspect was methodological, including the development of an FM
synthesis interface for testing semantic—timbral associations (Ash-
ley, 1986; Ethington & Punch, 1994; Miranda, 2002). Our aim was
to probe whether varying affective dimensions of target timbre
adjectives (valence and arousal) would exert a systematic effect on
the acoustic outputs produced by musically trained participants
instructed to create tones that best fit each adjective.

Results from acoustic, linear mixed-effect models, and cluster
analyses converge on a few main findings. First, PCA of compu-

tationally extracted acoustic attributes from the 1,280 signals re-
vealed three orthogonal acoustic PCs that together accounted for
72% of total variance. Increases in PC1 (“Intensity”), which ac-
counted for 30% of this total, are associated with increasing
high-frequency energy, spectral rolloff, spectral fluctuations in the
highest bands of the spectrum (>6.4 kHz), entropy, inharmonicity,
and auditory roughness. Using LMM to predict PC1 factor scores
from affective meaning data for each adjective (in interval and
ordinal versions), we found a statistically significant interaction
between valence and arousal. PC1 was higher for both positive and
negative words (e.g., brilliant, harsh) compared with words that
fell in the middle of the valence scale (dark, mysterious). This
effect was most pronounced in the medium and high-arousal
conditions. Put differently, PC1 exhibited something of a bimodal
distribution along the valence dimension: Positive and negative
words provoked higher acoustic intensity, but the neutral words,
which are by definition more affectively ambiguous and contex-
tually determined, led to more “neutral” sounds (i.e., tones with
less perceptually salient spectral components). This would seem to
run counter to the implied bipolarity of this dimension, in which
we could expect to see PC1 scores either increasing or decreasing
linearly from negative to positive valence. Rather, LMM results
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may suggest a more binary affective association between word
valence and PCI1, or perhaps the interaction of two orthogonal
valence dimensions, positive affect and negative affect (Watson,
Clark, & Tellegen, 1988).

This result is consonant with much of the literature in affirming
the affective salience of high-frequency energy and spectral nois-
iness. However, it sheds new light on how these acoustic compo-
nents may relate to the valence dimension of timbre semantics. For
example, Eerola et al. (2012) found that the ratio of high to
low-frequency energy was the most significant acoustic predictor
of both negative valence and high energy arousal. A similar result
was obtained by Wallmark, Iacoboni, Deblieck, and Kendall
(2018), who found that spectral centroid and an inharmonic spec-
tral distribution are associated with high arousal and negative
valence in both isolated instrument tones and brief samples of
popular music. Notably, however, other studies have shown an
association between spectral centroid and positive, high arousal
affect (McAdams et al.,, 2017). Our findings would appear to
harmonize these seemingly contradictory results in showing that
degree of affective polarity is most clearly associated with this
important basket of acoustic descriptors, not necessarily one side
of the valence coin or the other.

There are at least two plausible interpretations for this result.
Words rated as close to neutral in the Warriner et al. (2013) data
set may have provoked a greater degree of variability in PC1
between participants, thus leading to less consistent and more
middle-of-the-road mean factor scores than words at the twin poles
of the valence scale. However, if this were true, we would expect
to see wider 95% Cls associated with neutral words compared with
the other categories; as shown in Figure 2, this is not the case.
Alternatively, neutral words may have consistently struck partic-
ipants as more affectively lukewarm than the poles, and responded
by suppressing the more intense spectral options available from the
interface.

Acoustic attributes captured in PC1, moreover, have long been
linked in perceptual studies to some of the specific terms included
in the adjective set. In particular, the cross-modal adjectives bright
and brilliant are commonly associated with timbres with high
spectral centroid, whereas timbres with a lower spectral center are
described using opposing adjectives (e.g., dark; Alluri & Toivi-
ainen, 2012; Beauchamp, 1982; Schubert & Wolfe, 2006; Wall-
mark, 2019a; Wessel, 1979; Zacharakis et al., 2014). Our result
would seem to basically confirm this association from the other
direction: Participants crafted sounds with more strength in higher
frequencies in response to both positive and negative high-arousal
words such as brilliant and rough. This semantic link has also been
established in a number of other adjective-controlled synthesis
systems (Ethington & Punch, 1994).

The affective connotations of the spectral parameters captured
in PC1 have been interpreted through the framework of embodied
music cognition (Leman, 2007). In this account, high-arousal,
typically negatively valenced bodily states are related to physio-
logical changes in vocal production that accentuate high-frequency
components and noisiness (Johnstone & Scherer, 1999; Juslin &
Laukka, 2003; Scherer & Oshinsky, 1977). Although these “push
effects” (Scherer, Johnstone, & Klasmeyer, 2003) originate in
vocal expression, in some cases they may also provide important
state cues (Huron, 2001) informing our perceptual response to
instrumental timbre (Tsai et al., 2010). For example, Juslin and

Laukka (2003) suggested that instrumental sound (theoretically
including synthesized sound) can function as a “superexpressive
voice” by mimicking certain crude acoustic features of affective
vocal expression. Although the timbral properties of our FM patch
were not actually modulated by any physical push effects—that is,
participants did not need to exert greater physical exertion to
achieve qualities of timbre often associated with arousal—it is
possible that such learned bioacoustic correlations informed par-
ticipants’ interaction with the interface, guiding them toward re-
gions of the nonlinear space that seemed affectively congruent
with the target adjectives. Crucially, moreover, it is likely that
these general associations between spectral disposition and affect
dimensions have come to influence the conventional lexicon for
musical timbre, which is reflected (in the context of Western art
music, at least) in the discourse common to instrumental timbre as
promulgated in orchestration texts (Wallmark, 2019b). Our find-
ings suggest that, at least to a degree, the perceptual association
between the acoustic attributes of PC1 and timbre semantics that
has been documented in many previous studies may generalize
among musicians to the creation of novel timbres using an unfa-
miliar synthesis interface.

Moving to the other two PCs: The association between affective
structure and PC2, which corresponded mainly to spectral fluctu-
ations between 100 and 6400 Hz, was not related to the affect
dimensions in either of our parallel mixed-effects models. How-
ever, PC3, the “Loudness” factor that is positively associated with
RMS energy and spectral brightness (and negatively with spectral
skewness and kurtosis) exhibited a significant interaction between
valence and arousal (in the ordinal analysis only). This result
accords with the patterns in the PC1 models: Particularly in the
high-arousal condition, words occupying the clear poles of the
valence scale prompted higher PC3 values than the more neutral
words. The role of arousal in this interaction, though, is difficult to
interpret. RMS energy, which has the strongest loadings on this
factor, is typically correlated with perceived loudness, and loud-
ness is associated with high arousal (Dean et al., 2011; Leman et
al., 2005); it is difficult to explain the fact, therefore, that the
medium arousal condition had the highest PC3 scores across the
three valence levels. To be clear, RMS energy is not a timbral
property; with strongest loadings on this variable, PC3 is more
closely associated with amplitude differences than spectral attri-
butes (hence the shorthand, “Loudness” factor), and is therefore
governed by a different set of psychoacoustic principles (for re-
view, see Moore, 2014). Unexpected arousal results from PC3
models may indicate that loudness plays a complex and contextu-
ally variant role linking semantics to sounds in this task.

In addition to modeling the effects of the semantic dimensions
on the separate acoustic factor scores, we performed a cluster
analysis to explore the perceptual distances between individual
words in groupings based on a combination of both affective and
acoustic data. To do so, we implemented a novel hierarchical
clustering algorithm that uses SD-weighted Euclidean distances to
account for repeated measurements (Yeung et al., 2003). Our
analysis revealed two main patterns (see Figure 3). First, when
clustering our 20 target adjectives on the two semantic variables
and three acoustic variables, we found a dichotomous split by word
valence. This suggests that valence drives meaning structure of this
small set of representative timbre adjectives more than arousal,
which generally agrees with previous studies. Indeed, studies in
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affective semantics since the 1950s (Mehrabian & Russell, 1974,
Osgood et al., 1957; Russell & Mehrabian, 1977) have shown that
valence is typically the most salient of the major affect dimensions,
so this result is certainly not without precedent. However, incor-
porating timbral components into this interpretation, this result
tells us that positively and negatively valenced words also tended
to generate acoustical profiles that approximated this same basic
distinction. Interestingly, then, in contrast to the LMM results
showing a significant difference between the poles and the more
valence-neutral words, the clustering analysis produced a basically
dichotomous solution.

Next, arousal and the three acoustic PCs added nuance and
affective granularity to this binary portrait by differentiating words
into five total clusters (three positive, two negative) as well as a
number of subclusters. For instance, dull, though still ultimately
clustering with the other negative words, bifurcates from the others
at a high level; this suggests that both semantically and acousti-
cally, dull occupies a somewhat singular position among these
word stimuli. Similarly, full forms a cluster of its own among the
positive words. Together, this indicates that these two adjectives
reflect distinctive affective and acoustic profiles. (By way of
contrast, sweet—bright—charming are closely related, as are noble—
tender.) Closer distances at lower levels of the positively valenced
left side of the dendrogram reflect similarities in arousal and
acoustic factor scores: For example, higher arousal positive words
(brilliant, rich, penetrating) are grouped into a separate cluster
from lower arousal positive words (noble, tender, sweet). By way
of contrast, with the exception of dull, negative words formed just
one large cluster (with eight members). The clustering procedure
also revealed a couple of subgroupings that are challenging to
interpret: mysterious—penetrating formed its own subcluster, for
example, and harsh-melancholic were found to be closely con-
nected. Notwithstanding a couple of odd connections, however, the
coherence of this clustering analysis indicates that word valence
and arousal relate to acoustics in a way that is largely complemen-
tary and mutually reinforcing.

A number of limitations to the present study must be stated in
conclusion. We specifically focused this study on the timbral
creations of classically trained musicians. Our rationale was three-
fold: First, we wanted to investigate the interrelation of semantics
and timbre among a population with relatively consistent exposure
to the same representative sample of timbre adjectives. Second,
musicians are regularly accustomed to adjusting their sound in
performance according to semantic cues, whether through rehearsal,
instruction, discourse with fellow musicians, or solitary practice.
Third, musical training has been shown to affect behavioral re-
sponses to timbre (Chartrand & Belin, 2006; McAdams et al.,
2017; Siedenburg & McAdams, 2018). For these reasons, the
experimental task was relatively intuitive and natural for musi-
cians. Yet this design decision leaves open the possibility that the
present results are exclusive to trained musicians and would fail to
generalize to a nonmusician population (though see Filipic,
Tillmann, and Bigand [2010] for evidence that musical training has
a marginal effect on affective responses). In future research, it will
be necessary to expand the participant population to address
whether such consistencies in novel sound generation apply be-
yond trained musicians.

Additionally, we believe it would be advantageous to use a
larger set of adjective stimuli in future paradigms to decrease the

variance associated with each individual word. It could also be
interesting to examine adjectives from more recent treatises: The
words used here were selected from Wallmark (2019b) prior to
the completion of that study (which ultimately included 11 orches-
tration texts), at which time only Berlioz and Rimsky-Korsakov
had been fully analyzed. Also, it is possible that some adjectives
were more easily represented in our continuous playback interface
than others. It would further be interesting to derive adjectives
from sources outside of the orchestral tradition. Although our goal
with the present design was to deliberately limit ecological validity
to evaluate whether familiar timbre terms translated into an unfa-
miliar medium, this decision—in concert with a nonlinear inter-
face—arguably led to ambiguity among some participants (al-
though no participants reported such difficulty or confusion after
completing the task).

Finally, in future studies, it may be profitable to imagine other
kinds of intuitive multidimensional synthesis interfaces for such a
task, and to expand beyond FM synthesis, particularly to additive
models (Ethington & Punch, 1994; Gounaropoulos & Johnson,
2006). Linking affective semantic models more explicitly to the-
ories of musical embodiment, moreover, it could be interesting to
create a vocal version of this basic task; for example, asking
participants to sing a uniform pitch in a manner that best fits target
adjectives (Parise & Pavani, 2011).

Conclusion

The convergent results presented in this study suggest that
musically trained participants learned to “play” an unfamiliar
synthetic interface by locating regions corresponding to the affec-
tive implications of target adjectives. Specifically, valence and
arousal systematically interacted to influence PC1 (“Intensity”)
and PC3 (“Loudness”): Words at the poles of the valence scale
(i.e., clearly positive or clearly negative) led to higher average
acoustic factor scores (and were not significantly different from
one another), whereas words in the middle of that scale led to
lower scores. Taken together, valence appeared to be the most
important affective dimension in predicting acoustical response, as
indicated by both linear mixed-effects modeling and a clustering
analysis. The clustering analysis produced a basically dichotomous
valence structure, with certain individual words (e.g., dull, full)
standing out from the others in the semantic—acoustic space. In
sum, musician participants were fairly consistent in mapping the
affective dimensions of words onto the acoustic outputs they
create. This finding adds to the contemporary discourse of timbre
semantics by demonstrating that affective verbal prompts can
systematically influence sound production, just as listening to
timbre has been shown to elicit systematic verbal judgments (for
reviews, see Saitis & Weinzierl, 2019; Wallmark & Kendall, in
press). Beyond semantics, moreover, this study is in line with other
recent research in demonstrating the affective significance of tim-
bre in the generation of musical meaning (Fink, Latour, & Wall-
mark, 2018; Noble & McAdams, 2018).
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